Modyfikacje sprzętowe procesora: Różnice pomiędzy wersjami

Przejdź do nawigacji Przejdź do wyszukiwania
brak opisu edycji
Nie podano opisu zmian
Nie podano opisu zmian
Linia 5: Linia 5:
Na przestrzeni lat, głównie w Instytucie Okrętowym Politechniki Gdańskiej, w zespole rozwijającym system operacyjny CROOK, ale również w Amepol-u, powstało kilka modyfikacji procesora MERY-400. Wykorzystywał je zarówno CROOK jak i oprogramowanie na nim działające. Były one implelentowane w istniejących instalacjach MERY-400, a ostatecznie wszystkie złożyły się na poprawioną wersję procesora używanego w [[MX-16]].
Na przestrzeni lat, głównie w Instytucie Okrętowym Politechniki Gdańskiej, w zespole rozwijającym system operacyjny CROOK, ale również w Amepol-u, powstało kilka modyfikacji procesora MERY-400. Wykorzystywał je zarówno CROOK jak i oprogramowanie na nim działające. Były one implelentowane w istniejących instalacjach MERY-400, a ostatecznie wszystkie złożyły się na poprawioną wersję procesora używanego w [[MX-16]].


Przeróbki procesora dotyczą pakietów ''P-A'', ''P-D'', ''P-R'' i ''P-P'', a ich umiejscowienie związane jest z dostępnością wolnych bramek i przerzutników. Schematy przedstawione dalej pokazują zmiany (wyróżnione kolorem czerwonym) względem [http://mera400.pl/files/mera400-dtr-t4-cz2-mjc400-schematy.pdf schematów] znajdujących się w DTR. Nazwy nowych sygnałów, nie ujętych w dokumentacji, zostały nadane w celu ułatwienia przedstawienia zmian i nie pokrywają się z nazwami nadanymi przez autorów modyfikacji (te są nieznane).
Przeróbki procesora dotyczą pakietów ''P-A'', ''P-D'', ''P-R'' i ''P-P'', a ich umiejscowienie związane jest z obecnością wolnych bramek i przerzutników. Schematy przedstawione dalej pokazują zmiany (wyróżnione kolorem czerwonym) względem [http://mera400.pl/files/mera400-dtr-t4-cz2-mjc400-schematy.pdf schematów] znajdujących się w DTR. Nazwy nowych sygnałów, nie ujętych w dokumentacji, zostały nadane w celu ułatwienia przedstawienia zmian i nie pokrywają się z nazwami nadanymi przez autorów modyfikacji (te są nieznane).


= Automatyczny bootstrap =
= Automatyczny bootstrap =
Linia 13: Linia 13:
Zostało to zrobione poprzez modyfikację procesora, która tuż po włączeniu zasilania ustawia licznik rozkazów na adres 0xf000.
Zostało to zrobione poprzez modyfikację procesora, która tuż po włączeniu zasilania ustawia licznik rozkazów na adres 0xf000.


Przeróbka ta nie ma żadnego efektu, jeśli w systemie niejest zainstalowana pamięć MEGA, bądź bootstrap z pamięci MEGA nie został skonfigurowany.
Przeróbka ta nie ma żadnego efektu, jeśli w systemie nie jest zainstalowana pamięć MEGA, bądź bootstrap z pamięci MEGA nie został skonfigurowany.


== Realizacja techniczna ==
== Realizacja techniczna ==
Linia 21: Linia 21:
[[File:cpumod-p-a-boot.png|650px|center]]
[[File:cpumod-p-a-boot.png|650px|center]]


Układ '''M54''' to 4-bit rejestr przechowujący najstarszy kwartet bitów licznika rozkazów IC. Istniejące podciągnięcie jego wejścia '''CD''' (Count Down) do stanu wysokiego zostało przerwane i zastąpione iloczynem sygnałów '''+BOOTL''' i '''+PON'''. Aktywne "0" na wyjściu bramki NAND (układ '''M21''') powoduje zmniejszenie o jeden zawartości rejestru '''M54''', a co za tym idzie ustawienie licznika rozkazów na adres 0xf000.
Układ '''M54''' to 4-bit rejestr przechowujący najstarszy kwartet bitów licznika rozkazów IC. Istniejące połączenie jego wejścia '''CD''' (Count Down) do stanu wysokiego zostało przerwane i zastąpione iloczynem sygnałów '''+BOOTL''' i '''+PON'''. Aktywne "0" na wyjściu bramki NAND (układ '''M21''') powoduje zmniejszenie o jeden zawartości rejestru '''M54''', a co za tym idzie ustawienie licznika rozkazów na adres 0xf000.


= Instrukcja włączająca modyfikacje =
= Instrukcja włączająca modyfikacje =
Linia 37: Linia 37:
Należy zauważyć, że instrukcja ta wciąż jest instrukcją nielegalną, co zapewnia kompatybilność wsteczną. Programista używający instrukcji CRON w systemie operacyjnym musi obsłużyć fakt, że po jej wydaniu zgłoszone zostanie przerwanie "niepoprawny rozkaz".
Należy zauważyć, że instrukcja ta wciąż jest instrukcją nielegalną, co zapewnia kompatybilność wsteczną. Programista używający instrukcji CRON w systemie operacyjnym musi obsłużyć fakt, że po jej wydaniu zgłoszone zostanie przerwanie "niepoprawny rozkaz".


Rezultatem wydania instrukcji CRON musiało być "przełączenie" procesora w trym pracy z modyfikacjami aż do następnego zerowania, a więc sygnał '''+CRON''' musi zostać gdzieś zapamiętany. Dzieje się to na pakiecie P-P.
Rezultatem wydania instrukcji CRON musiało być "przełączenie" procesora w tryb pracy z modyfikacjami aż do następnego zerowania, a więc sygnał '''+CRON''' musi zostać gdzieś zapamiętany. Dzieje się to na pakiecie P-P.


[[File:cpumod-p-p-cpumod.png|550px|center]]
[[File:cpumod-p-p-cpumod.png|550px|center]]
Linia 47: Linia 47:
= 17-bitowe adresowanie bajtów =
= 17-bitowe adresowanie bajtów =


W oryginalnej konstrukcji procesora adres bajtu jest 16-bitowy, z czego 15 najstarszych bitów adresuje słowo w pamięci, a najmłodszy bit wskazuje lewy lub prawy bajt w 16-bitowym słowie maszyny. Oznacza to, że za pomocą instrukcji używających adresowania bajtowego (LB, RB, CB) można odwołać się jedynie do pierwszych 32k słów w maksymalnie 64k słowowym bloku. Fakt ten jest również źródłem nieścisłości w dokumentacji (patrz [[Adresowanie pamięci]]).
W oryginalnej konstrukcji procesora adres bajtu jest 16-bitowy, z czego 15 najstarszych bitów adresuje słowo w pamięci, a najmłodszy bit wskazuje lewy lub prawy bajt w 16-bitowym słowie maszyny. Oznacza to, że za pomocą instrukcji używających adresowania bajtowego (LB, RB, CB) można odwołać się jedynie do pierwszych 32k słów w 64k bloku. Fakt ten jest również źródłem nieścisłości w dokumentacji (patrz [[Adresowanie pamięci]]).


Adresowanie bajtu w nie zmodyfikowanym procesorze realizowane jest w następujący sposób:
Adresowanie bajtu w nie zmodyfikowanym procesorze realizowane jest w następujący sposób:
Linia 109: Linia 109:
[[File:cpumod-p-r-bab17.png|780px|center]]
[[File:cpumod-p-r-bab17.png|780px|center]]


Taktowany jest on sygnałem '''+STROB1''' w iloczynie z sygnałem '''+P4''', mówiącym o tym, że procesor jest w stanie P4, w którym następuję pre- i B-modyfikacja argumentu normalnego. Na wejściu D pojawia się sygnał, który w rezultacie wpisuje do przerzutnika wartość '''-CARRY''', gdy spełnione są wszystkie niezbęne warunki:
Taktowany jest on sygnałem '''+STROB1''' w iloczynie z sygnałem '''+P4''', mówiącym o tym, że procesor jest w stanie P4, w którym następuje pre- i B-modyfikacja argumentu normalnego. Na wejściu D pojawia się sygnał, który w rezultacie wpisuje do przerzutnika wartość '''-CARRY''', gdy spełnione są wszystkie niezbędne warunki:


  D = ~(CARRY & LRCBM & (~Q | ~BS))
  D = ~(CARRY & LRCBM & (~Q | ~BS))
Linia 120: Linia 120:
Zapamiętywana w przerzutniku wartość jest zanegowana, stąd bramka NOT ('''M55''') na wyjściu.
Zapamiętywana w przerzutniku wartość jest zanegowana, stąd bramka NOT ('''M55''') na wyjściu.


Na wejście S (które w związku z negacją na wyjściu '''M53''' jest efektywnie wejściem zerującym) podane są sygnały '''-P1''' (stan, w którym odczytywany jest rozkaz) i '''-P5''' (stan, w którym pobierany jest argument pośredni). Wystąpienie któregokolwiej z nich powoduje zapamiętanie "1", czyli efektywne wyzerowanie zawartości przerzutnika.
Na wejście S (które w związku z negacją na wyjściu '''M53''' jest efektywnie wejściem zerującym) podane są sygnały '''-P1''' (stan, w którym odczytywany jest rozkaz) i '''-P5''' (stan, w którym pobierany jest argument pośredni). Wystąpienie któregokolwiek z nich powoduje zapamiętanie "1", czyli efektywne wyzerowanie zawartości przerzutnika.


Ostatecznie sygnał '''+BAB17''' niesie informację o 17 bicie powstałym w wyniku B-modyfikacji lub pre-modyfikacji argumentu normalnego rozkazów bajtowych:
Ostatecznie sygnał '''+BAB17''' niesie informację o 17 bicie powstałym w wyniku B-modyfikacji lub pre-modyfikacji argumentu normalnego rozkazów bajtowych:

Menu nawigacyjne